Estimation of Maximal Existence Intervals for Solutions to a Riccati Equation via an Upper-Lower Solution Method

نویسندگان

  • Libin Mou
  • Stanley R. Liberty
چکیده

Denote by ’ the set of all real symmetric matrices. We use to 8 ‚ 8 K L K ž L a b denote that is positive semidefinite (definite). For or K  L M œ > ß > c d ! 0 Ё_ß > Ó 0 and \ œ P Mß 8 ‚ 8 V \ 8‚8 or ’ _ , denote by the space of all bounded and measurable a b functions from to and by the space of all with M \ P Mß T − P Mß "ß_ _ a b a b \ \ T − P Mß P Mß − P Mß w _ _ _ 8 a b a b a b \ E − V Fß U T − . , and Suppose . Consider the 8‚8 8 0 ’ ’ classical differential Riccati equation Xa b T ́ T € E T € T E € U  T FT œ !ß T > œ T w 0 0 X a b , (1)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Upper-Lower Solution Method for Differential Riccati Equations from Stochastic LQR Problems

We use upper and lower solutions to study the existence and properties of solutions to differential Riccati equations arising from stochastic linear quadratic regulator (LQR) problems. The main results include an interpretation of upper and lower solutions, comparison theorems, an upper-lower solution theorem, necessary and sufficient conditions for existence of solutions, an estimation of maxi...

متن کامل

Iterative scheme to a coupled system of highly nonlinear fractional order differential equations

In this article, we investigate sufficient conditions for existence of maximal and minimal solutions to a coupled system of highly nonlinear differential equations of fractional order with mixed type boundary conditions. To achieve this goal, we apply monotone iterative technique together with the method of upper and lower solutions. Also an error estimation is given to check the accuracy of th...

متن کامل

Application of fractional-order Bernoulli functions for solving fractional Riccati differential equation

In this paper, a new numerical method for solving the fractional Riccati differential  equation is presented. The fractional derivatives are described in the Caputo sense. The method is based upon  fractional-order Bernoulli functions approximations. First, the  fractional-order Bernoulli functions and  their properties are  presented. Then, an operational matrix of fractional order integration...

متن کامل

A Solution of Riccati Nonlinear Differential Equation using Enhanced Homotopy Perturbation Method (EHPM)

Homotopy Perturbation Method is an effective method to find a solution of a nonlinear differential equation, subjected to a set of boundary condition. In this method a nonlinear and complex differential equation is transformed to series of linear and nonlinear and almost simpler differential equations. These set of equations are then solved secularly. Finally a linear combination of the solutio...

متن کامل

Solutions structure of integrable families of Riccati equations and their applications to the perturbed nonlinear fractional Schrodinger equation

Some preliminaries about the integrable families of Riccati equations and solutions structure of these equations in several cases are presented in this paper, then by using of definitions for fractional derivative we apply the new extended of tanh method to the perturbed nonlinear fractional Schrodinger equation with the kerr law nonlinearity. Finally by using of this method and solutions of Ri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001